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Consider a diffusion process on an infinite line terminated by a trap and 
modulated by a periodic field. When the frequency is equal to zero the mean 
time to trapping will be finite or infinite, depending on the sign of the field. We 
ask whether this behavior can be changed by an oscillatory field, and show that 
it cannot for pure Brownian motion. We suggest that transition can appear 
when the signal propagation velocity is finite as for the telegrapher's equation. 
We further suggest that the asymptotic time dependence of the survival prob- 
ability is proportional to t 1/2 just as in the case of ordinary diffusion. The same 
conclusion is shown to hold for a system whose dynamics is governed by the 
equation 2 = xv(t)/'L, where L is a constant. 
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1. i N T R O D U C T I O N  

The p h e n o m e n o n  of stochastic resonance was originally proposed to 
account  for the periodicity of the earth's ice ages, (1~4) and has only recently 

been investigated with some intensity in the li terature of statistical physics 
(cf., for example, refs. 5 and 6). In  this p h e n o m e n o n  the periodic excitation 
of a parameter  characterizing a dynamical  system can lead to sometimes 
dramat ic  changes in the behavior  of the system as a function of the driving 

frequency. Thus, for example, it has been shown that in a noisy nonl inear  

bistable system one can actually increase the signal-to-noise ratio (defined 
in terms of the power ou tput  of the system) by periodically modula t ing  the 
depth of the wells at a resonant  frequency. (6) Stochastic resonance has also 
been observed in experimental  systems. (7'8/ 

We have recently examined a very simple r andom walk model which 

exhibits a form of stochastic resonance in terms of the mean  time to 
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trapping. (9) In this model one considers random walkers moving along a 
line (or particles diffusing on a line) terminated at both ends by a trap. The 
transition probabilities (or the convective velocity in the case of diffusion) 
are varied periodically and one asks how the mean first passage time 
(MFPT)  to trapping behaves as a function of the frequency. Our results 
indicated that there is a "resonant" frequency which minimizes this time. 
Reichl has also observed what might be interpreted as a phase transition 
in the eigenvalues characterizing a one-dimensional random walk system in 
the presence of reflecting boundariesJ 1~ 

In this note we discuss the problem of whether, and under what 
circumstances, a periodic excitation can lead to a phase transition in the 
mean trapping time for a diffusion process on an infinite line with a trap 
at x = 0 .  In order to specify the sense in which we use the term "phase 
transition," let us suppose that the dynamics of the system is described by 
the equation 

2 = V sin(~ot + q~) + w(t) (1) 

where V is a constant amplitude, ~b is a constant phase, and w(t) is white 
noise. One knows that when ~o = 0 the M F P T  to trapping will be infinite 
provided that V sin ~b ~> 0 and finite when V sin ~b < 0. Thus, in this trivial 
case there is an identifiable transition in the behavior of the MFPT.  The 
question motivating the present investigation is whether one can find a 
phase transition of this sort at some other value of co that differs from 0. 
We will show that the answer to this question is negative for a diffusion 
process although it may be possible for a process with a finite signal trans- 
mission speed. A second question is whether one can find such a phase 
transition by making an appropriate change in the dynamics of the system. 
We have been able to find an explicit solution to the resulting problem for 
the specific case in which the velocity in the noise-free system is propor- 
tional to x, but in no other case. Our results lead us to the conjecture that 
additive white noise cannot cause a phase transition if there is none in the 
noise-free system. 

2. B R O W N I A N  M O T I O N  ON A LINE 

If Eq. (1) describes the system behavior, one can describe the dynami- 
cal behavior of the system in terms of a probability density p(x, t] xo, 0) for 
the position of the diffusing particle at time t, given an initial position Xo. 
This is the solution to the diffusion equation 

@ D 02p-v(t) Op (2) e-; = eV 

where, for our present problem, v(t)=Vsin(cot+O), D is a diffusion 
constant, and the probability density for the displacement is to be found 
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subject to the initial condition p(x, 0ix0, 0 ) = 6 ( x - x 0 ) .  Because of the 
presence of a trap at x - - 0  the solution to this equation must satisfy the 
boundary condition p(0, t t x0, 0) -- 0. However, one cannot use the method 
of images or any modification thereof to find a solution as would be the 
case if v(t) were a constant. It is possible to find an alternate formulation 
of the problem by introducing a new coordinate ~ by 

f2 ~ = x -  v(~)& (3) 

in which case Eq. (2) is transformed into the equivalent form of an 
ordinary diffusion equation 

D (4) at ~ 2  

Although the transformation in Eq. (3) appears to lead to a simplification 
of the problem, in reality it merely transfers the difficulty in solving the 
problem to the fact that the boundary condition now depends on time. In 
the new set of coordinates, the transformation in Eq. (3) changes the 
boundary condition to a time-dependent one: 

p (-  fO'v(r) dz, tlxo, O)=O (5) 

While there is a considerable mathematical literature on Brownian motion 
in the presence of time-dependent boundaries, (u-16) we need not make use 
of it to determine whether the M F P T  till trapping is finite or infinite, but 
rather we rely on a simple argument based on the fact that in Brownian 
motion to a fixed trapping point the M F P T  is infinite. 

The argument consists of two parts. In the first we will suppose that 
V <  COXo. In the absence of noise the limits of x(t) are Xo +_ V/e), which 
implies that when V<cox o a particle will never be trapped and in the 
contrary case it will always be trapped. In our analysis we can picture the 
motion of the boundary in the (x, t) plane as shown in Fig. 1. Tangent lines 
have been drawn to the maximum and minimum displacements of the 
boundary along the x coordinate, i.e., Xma x = V/(D and Xmi n = - - V / ( D ,  both 
of which are less than x 0. We now argue that since the mean time for a 
particle at x o to reach either tangent line is infinite, it is afortiori true that 
the time to reach the oscillating boundary is infinite. The second part  of the 
argument accounts for the possibility V~> o)x o. Here we note that since the 
effective speed of propagat ion of a signal for a diffusion process is 
infinite, (iv'iS) there is a nonzero probability that the particle initially at x o 
will reach some point outside of the tangent line before reaching the trap. 
Such a particle will take an infinite amount  of time, on average, to be 
trapped. Therefore, the mean time for an arbitrary particle to be trapped 
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Fig. 1. Schematic representation of a diffusion system with an oscillating boundary trapping 
point. 

must likewise be infinite. Thus we see that the effect of additive noise on the 
dynamical system is to eliminate the phase transition that appears in the 
deterministic formulation. We note that the mean trapping time is 
necessarily infinite provided that there exists a value of Xma x that is strictly 
less than x o. The corresponding field is not restricted to be a periodic one 
provided that the condition stated above is fulfilled. 

Our argument has so far been directed toward determining whether 
the M F P T  to trapping is finite or infinite. A related question is that of 
determining the asymptotic decay of the probability that the particle is 
untrapped at time t. A simple physical argument suggests that this decay 
should go like t 1/2 at sufficiently long times. The argument starts from 
the observation that if the only trapping boundaries in the problem are the 
dotted lines in Fig. 1, then, in the case of trapping at either boundary 
the survival probability will go asymptotically to zero like t 1/2, although 
the constant multipliers will differ. This suggests that the survival probabil- 
ity S( t l xo )  satisfies the inequality 

a <~ t l/2S(tlXo) <~ b (6) 

at sufficiently long times, where a and b are two constants appropriate to 
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t r app ing  at  the two boundar ies .  An a n o n y m o u s  referee has k ind ly  p rov ided  

a more  complete ,  r igorous  p r o o f  of the a sympto t i c  t 2/2 behav io r  for the 

diffusion process.  
The infinite M F P T  at all values of co is clearly due to the infinite 

velocity of signal t ransmiss ion  associa ted  with Brownian  motion.  One  
expects  that  if the under ly ing  process  is charac ter ized  by a finite speed of 
t ransmiss ion,  as exemplif ied by solut ions  of the te legraph equat ion,  (17'18) it 

might  lead to a m i n i m u m  in the M F P T  akin  to that  repor ted  in reference 9. 
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Fig. 2. (a) Curves of the estimates of ( r )  x 10 -3, calculated using Eq. (8), as a function of 
log 10co for p• =0.5 470.4 cos(c0n). The three curves correspond to different values of N in 
Eq.(8): (--) N=4000; (...), N=10,000; (--) N=20,000. (b) Curves of the estimates of 
(z )  x 10-3 as a function of log 10co for p+ = 0 .5-  0.4 cos(con), with the same labeling conven- 
tion as in part (a). 
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To test this hypothesis we have used the method of exact enumeration to 
simulate the behavior of the M F P T  as a funtion of frequency for a lattice 
random walk in which the transition probabilities that take the random 
walk to one of the two nearest neighbors are chosen as 

p+(n) = 1  • COS(OK/) g+ (7) 

where n is the step number. Since this simulation is necessarily carried out 
in discrete time and only allows for finite step sizes, the system is one with 
a finite velocity of signal propagation. In Fig. 2 we present some results for 
the MFPT,  <~), plotted as a function of the frequency co. The parameter 
< r )  was estimated by calculating the survival probability, S(n), as a 
function of n, and performing the summation 

N 

E s(n) (8) 
n = l  

Two cases are shown: Fig. 2a presents the result for <v(co)) for the 
parameter value e = 0.4 and Fig. 2b gives the results for ~ = -0.4. Because 
of the cosine term in Eq. (7) the first case represents random walkers that 
initially move away from the origin and the second to random walkers that 
initially move towards the origin. The different curves in each figure 
correspond to different values of N in Eq. (8). In Fig. 2a we see that there 
is indeed a minimum present in the curves of the estimates of M F P T  as a 
function of co similar to that found in reference 9. We interpret this as an 
indication of a genuine minimum that can occur in a system with a finite 
propagation speed for signals. We also see a separation, at higher co, 
between the curves for different N in both parts of Fig. 2. This clearly 
indicates the divergence found in the case of Brownian motion. In Fig. 2b, 
for e = - 0 . 4 ,  the very low frequency behavior of <z)  tends towards a 
constant, while at higher frequencies the estimates of <z)  tend to diverge. 
These simulations tend to substantiate our understanding that the key 
element (in the absence of an overall bias) in determining the behavior of 
< r )  as a function of co is the velocity of signal propagation. 

3. M O T I O N  IN A B IAS ING FIELD 

Our results so far pertain only to Brownian motion in the presence of 
a field that is time-dependent but not space-dependent. A related question 
concerns possible effects of noise on systems in the presence of a combined 
time- and space-dependent field of force. We will specifically consider the 
effect of noise applied to a deterministic system in which a particle, initially 
at xo, never reaches the origin. This is equivalent to saying that the time 
for the moving particle to reach the origin is always infinite. Is it possible 
for the corresponding M F P T  to become finite in the presence of a time- 
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varying field? We have not answered this question in generality, but can 
address the problem for a diffusing particle whose displacement x(t) 
satisfies the stochastic differential equation 

X 
2 = Z v(t) + w(t) (9) 

where L is a constant with the dimensions of length and v(t) is a time- 
dependent velocity. In the absence of noise the solution to this equation is 

x(t)=xoexpIl f~ v(z)dr ] (10) 

so that x ( t ) r  for finite t provided that the integral ~()v(r)dr > -oo.  
To solve for the survival probability in the presence of noise we let 

p(x, t fXo, 0) be the probability density for the random variable x(t) which 
satisfies x (0)=  Xo. The Smoluchowski equation corresponding to Eq. (9) is 
the following: 

~p ~2p v(t) 
- D  (xp) (11) 

~t ~x 2 L c~x 

which must satisfy the boundary condition p(O, t l Xo, O)= 0 as well as the 
initial condition p(x, O jxo, O)= b ( x -  Xo). The probability that the particle 
has not reached the origin by time t, S(tlXo), is related to p(x, t lXo, 0)-by 

S(tlXo)= p(x, tlXo, O) dx (12) 

Equation (11) is readily solved using a Fourier sine transform and S(tlXo) 
can be expressed in terms of the normal integral 

e -u2/2 du (13) �9 ( x ) -  (2 1 / 2  __ 

a s  

Xo 

which means that the form of the survival probability remains unchanged 
from that obtained with simple diffusion, but the time is rescaled. In 
this last equation the function h(t) is defined in terms of a dimensionless 
displacement 

z(t)= Z ~(~) d~ (lS) 
a s  

h(t) = exp[2z(r)] dr (16) 
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Since the M F P T  to the origin ( ~ )  is related to S ( t lXo )  by 

( v ) =  S ( t l x o ) d t  (17) 

we see that  the convergence of the integral  depends  on how S(t] Xo) goes 
to 0 in the l imit  of large time. W h e n  v(t)  is osci l la tory the function )~(t)/t 

remains  b o u n d e d  in the l imit  t ~ 0% which implies the result  that  S ( t l x o )  

goes asympto t ica l ly  to zero as t-1/2, ana logous  to the case descr ibed earl ier  
in which no field is present.  

In  summary ,  our  results lead us to conjecture  that  the osci l la tory field 
will have no influence on whether  the mean  t ime to be t r apped  at  the origin 
is finite or infinite. This is intui t ively clear in the case of a field tha t  varies 
with a sufficiently high frequency. However ,  it may  be the case that  when 

the t ime to reach the t r app ing  po in t  is finite in the noise-free case, as for 
example,  when diffusion is descr ibed by a te legrapher ' s  equat ion ,  (18/there 
will a lways be a type of s tochast ic  resonance  tha t  exists as a funct ion of 
frequency. We have not  invest igated this po in t  except in the two- t r ap  
case (9) cited earlier. 

We  are indebted  to a referee for p rov id ing  a r igorous  p roof  of  the 
asympto t i c  p ropor t i ona l i t y  of the survival  t ime to t -1/2 in the case of 
o rd ina ry  diffusion. 
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